The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise, like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with "ring structure" property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.
翻译:异常子图的探测自然出现在各种现实生活中,但标签噪音会严重干扰结果。作为我们工作的动机,我们侧重于不准确的监督,并使用先前的知识来减少噪音的影响,例如查询图。被分配的网络中的异常现象表现出结构化的特性,例如“环形结构”属性的洗钱异常现象。这是对被分配的网络中快速和近似查询异常现象的主要挑战。我们建议一种新型的搜索方法:1)将查询图分解成恒星;2)对被分配的脊椎进行分类;3)在根脊椎序列下将异常恒星集合到近处查询。我们介绍ANOMALYMAXQ,在68,411个公司网络(Tiancha数据集)、7.72m专利网络(Company专利)上进行演练。广泛的实验显示,我们的方法具有高度稳健和快速反应的时间。当运行专利数据集时,一次查询该图的平均运行时间约为252秒。