The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise, like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with "ring structure" property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.


翻译:异常子图的探测自然出现在各种现实生活中,但标签噪音会严重干扰结果。作为我们工作的动机,我们侧重于不准确的监督,并使用先前的知识来减少噪音的影响,例如查询图。被分配的网络中的异常现象表现出结构化的特性,例如“环形结构”属性的洗钱异常现象。这是对被分配的网络中快速和近似查询异常现象的主要挑战。我们建议一种新型的搜索方法:1)将查询图分解成恒星;2)对被分配的脊椎进行分类;3)在根脊椎序列下将异常恒星集合到近处查询。我们介绍ANOMALYMAXQ,在68,411个公司网络(Tiancha数据集)、7.72m专利网络(Company专利)上进行演练。广泛的实验显示,我们的方法具有高度稳健和快速反应的时间。当运行专利数据集时,一次查询该图的平均运行时间约为252秒。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
44+阅读 · 2021年9月19日
专知会员服务
15+阅读 · 2021年8月13日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关VIP内容
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
44+阅读 · 2021年9月19日
专知会员服务
15+阅读 · 2021年8月13日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
20+阅读 · 2021年2月28日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2017年5月14日
Top
微信扫码咨询专知VIP会员