Widely used software systems such as video encoders are by necessity highly configurable, with hundreds or even thousands of options to choose from. Their users often have a hard time finding suitable values for these options (i.e. finding a proper configuration of the software system) to meet their goals for the tasks at hand, e.g. compress a video down to a certain size. One dimension of the problem is of course that performance depends on the input data: a video as input to an encoder like x264 or a file system fed to a tool like xz. To achieve good performance, users should therefore take into account both dimensions of (1) software variability and (2) input data. In this problem-statement paper, we conduct a large study over 8 configurable systems that quantifies the existing interactions between input data and configurations of software systems. The results exhibit that (1) inputs fed to software systems interact with their configuration options in non monotonous ways, significantly impacting their performance properties (2) tuning a software system for its input data makes it possible to multiply its performance by up to ten (3) input variability can jeopardize the relevance of performance predictive models for a field deployment.


翻译:视频编码器等广泛使用的软件系统必然是高度可配置的, 并有数百甚至数千个选项可供选择。 用户通常很难找到这些选项的适当值( 即找到软件系统的适当配置), 以实现他们手头任务的目标, 例如将视频压缩到一定大小。 问题的一个方面当然是, 性能取决于输入数据: 视频作为编码器( 如 x264 ) 的输入器或输入工具( 如 xz ) 的文档系统。 因此, 要实现良好的性能, 用户应该考虑(1) 软件变异性和(2) 输入数据的两种层面。 在这份问题陈述文件中, 我们对8个可配置的系统进行了大规模研究, 将输入数据与软件系统配置的现有互动量化到一定的大小。 结果展示 (1) 软件系统输入的输入与其配置选项发生非单一式的相互作用, 严重影响其性能特性 (2) 调整一个输入数据的软件系统使其性能乘以10(3) 输入变异性, 可能危及实地部署的性能预测模型的相关性。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员