The ever-increasing number of nodes in current and future wireless communication networks brings unprecedented challenges for the allocation of the available communication resources. This is caused by the combinatorial nature of the resource allocation problems, which limits the performance of state-of-the-art techniques when the network size increases. In this paper, we take a new direction and investigate how methods from statistical physics can be used to address resource allocation problems in large networks. To this aim, we propose a novel model of the wireless network based on a type of disordered physical systems called spin glasses, and on the contributions of the recently Nobel laureate G. Parisi. We show that resource allocation problems, e.g., time, code or frequency assignment, have the same structure as the problem of finding specific configurations in spin glasses. Based on this parallel, we investigate the use of the Survey Propagation method from statistical physics in the solution of resource allocation problems in wireless networks. Through numerical simulations we show that the proposed statistical-physics-based resource allocation algorithm is a promising tool for the efficient allocation of communication resources in large wireless communications networks. Given a fixed number of resources, we are able to serve a larger number of nodes, compared to state-of-the-art reference schemes, without introducing more interference into the system


翻译:目前和未来无线通信网络中越来越多的节点给现有通信资源的分配带来了前所未有的挑战。这是因为资源分配问题具有组合性质,在网络规模扩大时限制了最先进技术的性能。在本文件中,我们采取新的方向,调查如何利用统计物理方法解决大型网络的资源分配问题。为此,我们提出了一个无线网络的新模式,其基础是被称为旋转眼镜的无序物理系统类型,以及最近诺贝尔奖得主G. Parisi的贡献。我们表明资源分配问题,例如时间、代码或频率分配问题,与在旋转眼镜中寻找特定配置的问题有着相同的结构。基于这一平行,我们调查了统计物理调查方案方法在解决无线网络资源分配问题方面的使用情况。我们通过数字模拟表明,拟议的基于统计物理的资源分配算法是大规模无线通信网络高效分配通信资源的一个很有希望的工具。鉴于资源的数量固定,我们能够更大规模地利用统计物理调查方法来解决无线网络的资源分配问题。相比,我们能够更大规模地推行一个没有参照的系统,而没有参照的干涉。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员