We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics. We characterize the monotone automata that almost surely fill the space starting from any nontrivial Bernoulli measure. In contrast, we show the problem is undecidable if the monotonicity condition is dropped. We also construct examples where the space-filling property depends on the initial Bernoulli measure in a non-monotone way.
翻译:我们用随机配置的二维冻结细胞自动成像仪来研究二维冻结细胞自动成像的定性特性。 如果自动成像也是单质的, 设置就等同于靴带穿孔。 我们探讨单声波限制可能的无症状动态的程度。 我们用单声波自动成像几乎肯定地填补从任何非三度伯努利测量开始的空间。 相反, 我们发现, 如果单声调状态下降, 问题是无法判断的。 我们还以非单声波方式构建空间填充属性取决于初始伯努利测量的示例 。