Networks are used as highly expressive tools in different disciplines. In recent years, the analysis and mining of temporal networks have attracted substantial attention. Frequent pattern mining is considered an essential task in the network science literature. In addition to the numerous applications, the investigation of frequent pattern mining in networks directly impacts other analytical approaches, such as clustering, quasi-clique and clique mining, and link prediction. In nearly all the algorithms proposed for frequent pattern mining in temporal networks, the networks are represented as sequences of static networks. Then, the inter- or intra-network patterns are mined. This type of representation imposes a computation-expressiveness trade-off to the mining problem. In this paper, we propose a novel representation that can preserve the temporal aspects of the network losslessly. Then, we introduce the concept of constrained interval graphs (CIGs). Next, we develop a series of algorithms for mining the complete set of frequent temporal patterns in a temporal network data set. We also consider four different definitions of isomorphism to allow noise tolerance in temporal data collection. Implementing the algorithm for three real-world data sets proves the practicality of the proposed algorithm and its capability to discover unknown patterns in various settings.
翻译:在不同的学科中,使用网络作为高度直观的工具。近年来,对时间网络的分析和开采吸引了大量的注意力。在网络科学文献中,常见的典型采矿被认为是一项基本任务。除了许多应用外,对网络中频繁的典型采矿的调查直接影响其他分析方法,例如集群、准分类和分类采矿,以及链接预测。在几乎所有为在时间网络中频繁进行模式采矿而提出的算法中,这些网络都以静态网络的序列为代表。然后,对网络间或网络内模式进行探测。这种表示方式要求对采矿问题进行计算-清晰的交换。在本文中,我们提出了一个新的表示方式,可以不遗漏地保存网络的时间方面。然后,我们引入了受限的间隙图概念。接下来,我们为开采在时间网络数据集中常见的全套频繁时间模式而制定了一系列的算法。我们还考虑四个不同的形态定义,以便在时间数据收集中允许对噪音进行容忍。为三个真实世界数据集采用算法,这证明了拟议算法的实用性及其在各种未知模式中发现的能力。