Sparse model identification enables the discovery of nonlinear dynamical systems purely from data; however, this approach is sensitive to noise, especially in the low-data limit. In this work, we leverage the statistical approach of bootstrap aggregating (bagging) to robustify the sparse identification of nonlinear dynamics (SINDy) algorithm. First, an ensemble of SINDy models is identified from subsets of limited and noisy data. The aggregate model statistics are then used to produce inclusion probabilities of the candidate functions, which enables uncertainty quantification and probabilistic forecasts. We apply this ensemble-SINDy (E-SINDy) algorithm to several synthetic and real-world data sets and demonstrate substantial improvements to the accuracy and robustness of model discovery from extremely noisy and limited data. For example, E-SINDy uncovers partial differential equations models from data with more than twice as much measurement noise as has been previously reported. Similarly, E-SINDy learns the Lotka Volterra dynamics from remarkably limited data of yearly lynx and hare pelts collected from 1900-1920. E-SINDy is computationally efficient, with similar scaling as standard SINDy. Finally, we show that ensemble statistics from E-SINDy can be exploited for active learning and improved model predictive control.
翻译:在这项工作中,我们利用套靴集集(粘贴)的统计方法,以巩固对非线性动态(SINDI)算法的稀少识别。首先,从有限和噪音数据子集中找出了SINDI的混合模型。然后,综合模型统计数据用于产生候选功能的概率性,从而产生不确定性量化和概率预测。我们将这种混合-辛迪(E-辛迪)算法应用于几个合成和现实世界数据集,并展示从极为吵闹和有限的数据中发现模型的准确性和稳健性。例如,E-辛迪从数据中发现部分差异方程式模型,其测量噪音比以前报告的多一倍以上。同样,E-辛迪从极有限的年度林克斯和隐迪(E-辛迪)拼图数据中学习Lotka Volterra动态。我们从1900-1920年收集的年度林克斯和隐蔽带(E-SINDIS-S-S-S-S-Sinstal-Servey)收集的精确度数据,最终通过SIM-S-SIMS-S-SQS-S-S-Slavical Slap slaim Stal Sy 标准分析进行升级的升级的升级分析,以便进行升级的改进后,最终和SIMIS-S-SIMIS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Slad-Slad-Slad-Slad-Slad-Slad-Slad-Sladal-Slad-S-Slad-Slad-SLAdal的升级的升级的升级的升级的升级的升级的升级的升级的模拟分析,可以进行。