This work develops a provably accurate fully-decentralized alternating projected gradient descent (GD) algorithm for recovering a low rank (LR) matrix from mutually independent projections of each of its columns, in a fast and communication-efficient fashion. To our best knowledge, this work is the first attempt to develop a provably correct decentralized algorithm (i) for any problem involving the use of an alternating projected GD algorithm; (ii) and for any problem in which the constraint set to be projected to is a non-convex set.
翻译:这项工作以快速和沟通效率高的方式,为从对每栏的相互独立预测中恢复低级(LR)矩阵,开发了一种完全分散的、完全分散的交替梯度预测梯度(GD)算法。 据我们所知,这项工作是首次尝试开发一种可以准确无误的分散算法(i) 针对涉及使用交替预测的GD算法的任何问题;(ii) 对于任何被设定为非集束限制的问题。