Larger language models have higher accuracy on average, but are they better on every single instance (datapoint)? Some work suggests larger models have higher out-of-distribution robustness, while other work suggests they have lower accuracy on rare subgroups. To understand these differences, we investigate these models at the level of individual instances. However, one major challenge is that individual predictions are highly sensitive to noise in the randomness in training. We develop statistically rigorous methods to address this, and after accounting for pretraining and finetuning noise, we find that our BERT-Large is worse than BERT-Mini on at least 1-4% of instances across MNLI, SST-2, and QQP, compared to the overall accuracy improvement of 2-10%. We also find that finetuning noise increases with model size and that instance-level accuracy has momentum: improvement from BERT-Mini to BERT-Medium correlates with improvement from BERT-Medium to BERT-Large. Our findings suggest that instance-level predictions provide a rich source of information; we therefore, recommend that researchers supplement model weights with model predictions.


翻译:较大的语言模型平均具有较高的准确性,但在每个实例(数据点)中,它们是否更好?有些工作表明,较大的模型在分配上具有较高的稳健性,而另一些工作则表明,在稀有分组中,这些模型的准确性较低。为了理解这些差异,我们在个别实例中对这些模型进行了调查;然而,一个重大挑战是,单个预测对随机性中的噪音非常敏感。我们制定了在统计上严格的方法来解决这个问题,在计算了培训前和微调噪音之后,我们发现我们的BERT-Large在MNLI、SST-2和QP至少1-4%的案例中比BERT-Mini要差,而总体精确度则提高2-10%。我们还发现,微调噪音与模型大小相比,这种实例级的准确性具有动力:从BERT-Mini到BERT-Medium的改进与BERT-Mium的改进有关。我们发现,实例级预测提供了丰富的信息来源;因此,我们建议研究人员用模型预测补充模型重量。

1
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
19+阅读 · 2021年4月4日
专知会员服务
18+阅读 · 2020年9月6日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
5+阅读 · 2019年10月31日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员