Recent advances in scientific instruments have resulted in dramatic increase in the volumes and velocities of data being generated in every-day laboratories. Scanning electron microscopy is one such example where technological advancements are now overwhelming scientists with critical data for montaging, alignment, and image segmentation -- key practices for many scientific domains, including, for example, neuroscience, where they are used to derive the anatomical relationships of the brain. These instruments now necessitate equally advanced computing resources and techniques to realize their full potential. Here we present a fast out-of-focus detection algorithm for electron microscopy images collected serially and demonstrate that it can be used to provide near-real time quality control for neurology research. Our technique, Multi-scale Histologic Feature Detection, adapts classical computer vision techniques and is based on detecting various fine-grained histologic features. We further exploit the inherent parallelism in the technique by employing GPGPU primitives in order to accelerate characterization. Tests are performed that demonstrate near-real-time detection of out-of-focus conditions. We deploy these capabilities as a funcX function and show that it can be applied as data are collected using an automated pipeline . We discuss extensions that enable scaling out to support multi-beam microscopes and integration with existing focus systems for purposes of implementing auto-focus.
翻译:科学仪器的最近进步导致每天实验室生成的数据数量和速度急剧增加。扫描电子显微镜是一个例子,目前技术进步已成为压倒一切的科学家,他们掌握了调和、校正和图像分解的关键数据 -- -- 许多科学领域的关键做法,例如神经科学,这些技术用来得出大脑的解剖关系。这些仪器现在需要同样先进的计算资源和技术来充分发挥其潜力。我们在这里展示了一种对连续收集的电子显微镜的近实时探测算法,并表明可以用来为神经学研究提供接近实时的时间质量控制。我们的技术、多尺度历史特征探测、对古典计算机视觉技术进行了调整,并基于探测各种微细微的外科特征。我们进一步利用GPGPPPU原始特征技术来利用技术中固有的平行平行关系来加速特征的鉴定。我们利用这些能力来显示近实时地探测外科图像,并证明这些能力可以用来提供神经学研究的近实时质量控制。我们运用这些能力作为真菌功能来提供近实时的神经学研究。我们把这种能力作为一种可变式的功能,并表明可以将数据用于自动扩展的分流数据,以便将数据用于现有的分流分析。我们用来进行应用,以便将数据作为自动放大分析。