Machine learning has been widely adopted in many domains, including high-stakes applications such as healthcare, finance, and criminal justice. To address concerns of fairness, accountability and transparency, predictions made by machine learning models in these critical domains must be interpretable. One line of work approaches this challenge by integrating the power of deep neural networks and the interpretability of case-based reasoning to produce accurate yet interpretable image classification models. These models generally classify input images by comparing them with prototypes learned during training, yielding explanations in the form of "this looks like that." However, methods from this line of work use spatially rigid prototypes, which cannot explicitly account for pose variations. In this paper, we address this shortcoming by proposing a case-based interpretable neural network that provides spatially flexible prototypes, called a deformable prototypical part network (Deformable ProtoPNet). In a Deformable ProtoPNet, each prototype is made up of several prototypical parts that adaptively change their relative spatial positions depending on the input image. This enables each prototype to detect object features with a higher tolerance to spatial transformations, as the parts within a prototype are allowed to move. Consequently, a Deformable ProtoPNet can explicitly capture pose variations, improving both model accuracy and the richness of explanations provided. Compared to other case-based interpretable models using prototypes, our approach achieves competitive accuracy, gives an explanation with greater context, and is easier to train, thus enabling wider use of interpretable models for computer vision.


翻译:在许多领域,包括保健、金融和刑事司法等高取量应用领域,机械学习被广泛采用,包括保健、金融、刑事司法等高取量应用。为了解决公平、问责和透明度方面的关切,必须对这些关键领域的机器学习模型所作的预测进行解释。一行工作通过整合深神经网络的力量和基于案例的推理的可解释性来应对这一挑战,以产生准确而可解释的图像分类模型。这些模型通常通过将输入图像与培训期间所学的原型进行比较来分类,从而产生“类似”的解释。然而,这一行工作采用的方法使用空间僵硬的原型,这无法明确反映变化。在本文件中,我们通过提出基于案例的可解释神经网络网络,提供基于空间灵活的原型,称之为变形准的原型网络(变型 ProtoPNet) 。 在可变型的ProtoPNet中,每个原型都由几个可适应性部分组成,根据输入图案图案图像来调整其相对空间位置。这让每个原型都能够检测到空间变异的物体特征,而不能明确解释变化。在本文件中,我们提出一个基于更精确的原型的原型解释,因此,可以将更精确的原型转变为更精确的原型解释。 将更精确的原型的原型的原型的原型推到更精确的原型,更精确的原型的原型的原型号可以改进到更精确的原型解释。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【CVPR2021】重新思考BiSeNet让语义分割模型速度起飞
专知会员服务
32+阅读 · 2021年5月5日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月2日
Deformable ConvNets v2: More Deformable, Better Results
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员