With the advent of globalization, there is an increasing demand for multilingual automatic speech recognition (ASR), handling language and dialectal variation of spoken content. Recent studies show its efficacy over monolingual systems. In this study, we design a large multilingual end-to-end ASR using self-attention based conformer architecture. We trained the system using Arabic (Ar), English (En) and French (Fr) languages. We evaluate the system performance handling: (i) monolingual (Ar, En and Fr); (ii) multi-dialectal (Modern Standard Arabic, along with dialectal variation such as Egyptian and Moroccan); (iii) code-switching -- cross-lingual (Ar-En/Fr) and dialectal (MSA-Egyptian dialect) test cases, and compare with current state-of-the-art systems. Furthermore, we investigate the influence of different embedding/character representations including character vs word-piece; shared vs distinct input symbol per language. Our findings demonstrate the strength of such a model by outperforming state-of-the-art monolingual dialectal Arabic and code-switching Arabic ASR.


翻译:随着全球化的到来,对多语种自动语音识别(ASR)、处理语言和口语内容的辩证变异的需求日益增加。最近的研究显示,它对于单语系统的效力。在本研究中,我们利用以自我注意为基础的校准结构设计了一个大型多语种端对端ASR。我们用阿拉伯语(Ar)、英语(En)和法语(Fr)语言对该系统进行了培训。我们评估了系统处理情况:(一) 单语(Ar、En和Fr);(二) 多对流(现代标准阿拉伯语,以及埃及和摩洛哥语等方言变);(三) 代码转换(Ar-En/Fr)和方言(MSA-埃及方言)测试案例,并与目前的艺术现状系统进行比较。此外,我们调查了不同嵌入/字符表达方式的影响,包括字符与字体;共享不同的输入符号。我们的调查结果通过超越了艺术单语阿拉伯语和代码转换阿拉伯方言的状态,显示了这种模型的力量。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
6+阅读 · 2019年1月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2020年5月25日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
6+阅读 · 2019年1月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员