Self-supervised learning (SSL) has attracted much interest in remote sensing and earth observation due to its ability to learn task-agnostic representations without human annotation. While most of the existing SSL works in remote sensing utilize ConvNet backbones and focus on a single modality, we explore the potential of vision transformers (ViTs) for joint SAR-optical representation learning. Based on DINO, a state-of-the-art SSL algorithm that distills knowledge from two augmented views of an input image, we combine SAR and optical imagery by concatenating all channels to a unified input. Subsequently, we randomly mask out channels of one modality as a data augmentation strategy. While training, the model gets fed optical-only, SAR-only, and SAR-optical image pairs learning both inner- and intra-modality representations. Experimental results employing the BigEarthNet-MM dataset demonstrate the benefits of both, the ViT backbones and the proposed multimodal SSL algorithm DINO-MM.


翻译:自我监督的学习(SSL)吸引了人们对遥感和地球观测的极大兴趣,因为它有能力在不作人类说明的情况下学习任务不可知的表现,虽然现有的SSL大部分在遥感领域工作,利用ConvNet的骨干和专注于单一模式,但我们探索了视觉变压器(ViTs)在合成孔径雷达和光学联合教学中的潜力。根据DINO,一个从输入图像的两种扩大观点中提取知识的最先进的SSL算法,我们将合成孔径雷达和光学图像结合起来,将所有渠道归结为统一的输入。随后,我们随机将一种模式的渠道遮盖出来,作为数据增强战略。在培训的同时,该模型被输入只光学、仅求求光和合成孔光成图像配对,学习内部和内部的模拟。使用大地球网-MMM数据集的实验结果显示了VIT骨干和拟议的多式SL DINO-MM算法的好处。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员