Motion capture (mocap) and time-of-flight based sensing of human actions are becoming increasingly popular modalities to perform robust activity analysis. Applications range from action recognition to quantifying movement quality for health applications. While marker-less motion capture has made great progress, in critical applications such as healthcare, marker-based systems, especially active markers, are still considered gold-standard. However, there are several practical challenges in both modalities such as visibility, tracking errors, and simply the need to keep marker setup convenient wherein movements are recorded with a reduced marker-set. This implies that certain joint locations will not even be marked-up, making downstream analysis of full body movement challenging. To address this gap, we first pose the problem of reconstructing the unmarked joint data as an ill-posed linear inverse problem. We recover missing joints for a given action by projecting it onto the manifold of human actions, this is achieved by optimizing the latent space representation of a deep autoencoder. Experiments on both mocap and Kinect datasets clearly demonstrate that the proposed method performs very well in recovering semantics of the actions and dynamics of missing joints. We will release all the code and models publicly.


翻译:人类行动的捕捉(鼠标)和飞行时间感测正在变得日益流行,以进行稳健的活动分析。应用范围从行动识别到对健康应用的移动质量量化不等。尽管无标记运动捕捉在医疗等关键应用方面取得了巨大进展,但基于标记的系统,特别是活动标记系统,仍然被视为金标准。但是,两种模式都存在若干实际挑战,例如可见度、跟踪错误,以及只需保持标记设置便捷,记录移动时使用减少的标记设置。这意味着某些联合地点甚至不会被标记起来,使全体运动的下游分析具有挑战性。为了解决这一差距,我们首先将重建无标记的联合数据作为错误的线性反问题提出问题。我们将通过将它投射到人类行动的方形,为某一特定行动恢复缺失的连接点,通过优化深层自动电解码的潜层空间代表实现这一点。对mocape 和 Kinect 数据集的实验清楚地表明,拟议的方法在恢复缺失联合体的行动和动态方面表现得非常好。我们将公开发布所有代码和模型。

0
下载
关闭预览

相关内容

如何撰写好你的博士论文?CMU-Priya博士这30页ppt为你指点
专知会员服务
55+阅读 · 2020年10月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
已删除
将门创投
11+阅读 · 2019年8月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Precise Detection in Densely Packed Scenes
Arxiv
3+阅读 · 2019年4月8日
VIP会员
相关资讯
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
已删除
将门创投
11+阅读 · 2019年8月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员