Integrated space-air-ground networks promise to offer a valuable solution space for empowering next generation of communication networks (6G), particularly in the context of connecting the unconnected and ultraconnecting the connected. Such digital inclusion thrive makes the resource management problem of particular interest. However, the classical model-based optimization methods cannot meet the real-time processing and user's QoS needs, due to the high heterogeneity of the space-air-ground networks and the complexity of its associated resource allocation problems. Given the premises of artificial intelligence at automating wireless networks design, this paper focuses on showcasing the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications. The paper first overviews the most relevant state-of-the art in the context of machine learning applications to the resource allocation problems in integrated space-air-ground networks. The paper then proposes, and shows the benefit of, one specific use-case that adopts ensembling deep neural network for optimizing the user scheduling policies in space-high altitude platform station (HAPS)-ground networks. Finally, the paper presents some challenges and sheds light on several open issues in the context of machine learning applications in space-air-ground networks, namely, power limit, imperfect channel state information, multi-HAPSs scenarios and flying taxis-empowered systems.
翻译:空地综合网络有望为赋予下一代通信网络(6G)赋权提供宝贵的解决方案空间,特别是在连接未连接和超链接的通信网络(6G)的背景下,提供宝贵的解决方案空间-地空综合网络(6G),这种数字包容使资源管理问题特别引人关注。然而,传统的基于模型的优化方法无法满足实时处理和用户的QOS需求,因为空空地网络的高度差异性及其相关的资源分配问题的复杂性。鉴于在无线网络自动化设计中人工智能的前提,本文件侧重于展示在空间-空地综合通信用户时间安排方面机器学习的前景。本文件首先概述了机器学习应用应用于空间-空地综合网络资源分配问题方面最相关的最新技术。随后,本文提出并展示了一种具体的使用案例的好处,即采用深层神经网络来优化空间-高空平台站(HAPS)地面网络(HAPS)用户的时间安排政策。最后,本文介绍了空间-空空地综合通信中的用户时间安排安排安排安排、机载空间-地空间-地空间空间-地空间-轨道的极限应用中的一些难题,以及机载动力-轨道-空间-空间-空间-空间-空间-空间-空间-轨道-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-空间-