Neighbourhood watch is a concept that allows a community to distribute a complex security task in between all members. Members of the community carry out individual security tasks to contribute to the overall security of it. It reduces the workload of a particular individual while securing all members and allowing them to carry out a multitude of security tasks. Wireless sensor networks (WSNs) are composed of resource-constraint independent battery driven computers as nodes communicating wirelessly. Security in WSNs is essential. Without sufficient security, an attacker is able to eavesdrop the communication, tamper monitoring results or deny critical nodes providing their service in a way to cut off larger network parts. The resource-constraint nature of sensor nodes prevents them from running full-fledged security protocols. Instead, it is necessary to assess the most significant security threats and implement specialised protocols. A neighbourhood-watch inspired distributed security scheme for WSNs has been introduced by Langend\"orfer. Its goal is to increase the variety of attacks a WSN can fend off. A framework of such complexity has to be designed in multiple steps. Here, we introduce an approach to determine distributions of security means on large-scale static homogeneous WSNs. Therefore, we model WSNs as undirected graphs in which two nodes connected iff they are in transmission range. The framework aims to partition the graph into $n$ distinct security means resulting in the targeted distribution. The underlying problems turn out to be NP hard and we attempt to solve them using linear programs (LPs). To evaluate the computability of the LPs, we generate large numbers of random {\lambda}-precision unit disk graphs (UDGs) as representation of WSNs. For this purpose, we introduce a novel {\lambda}-precision UDG generator to model WSNs with a minimal distance in between nodes.


翻译:邻里观察是一个概念, 使社区能够在所有成员之间分配复杂的安全任务。 社区成员执行个别的安全任务, 以有助于整体安全。 它减少特定个人的工作量, 同时确保所有成员的安全, 并允许他们执行多种安全任务。 无线传感器网络( WSNs) 由资源限制的独立电池驱动的计算机组成, 以无线通讯为节点。 网络安全是不可或缺的。 没有足够安全, 攻击者能够窃听通信, 篡改监测结果, 或拒绝提供其服务的关键节点, 从而切断网络的更大部分。 传感器节点的资源限制性质使他们无法执行完整的安全协议。 相反, 有必要评估最重大的安全威胁并执行专门的协议。 由 Langend\\ orfer 引入了由资源限制独立的电池驱动的网络安全计划。 目标是增加攻击的种类, 网络安全网点可以消除。 这样的复杂度框架必须用多个步骤来设计 。 在这里, 我们引入一个方法来决定安全分配的直线性目标, 将我们使用网络的直径路路路路 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员