Augmented Reality (AR) as a platform has the potential to facilitate the reduction of the cocktail party effect. Future AR headsets could potentially leverage information from an array of sensors spanning many different modalities. Training and testing signal processing and machine learning algorithms on tasks such as beam-forming and speech enhancement require high quality representative data. To the best of the author's knowledge, as of publication there are no available datasets that contain synchronized egocentric multi-channel audio and video with dynamic movement and conversations in a noisy environment. In this work, we describe, evaluate and release a dataset that contains over 5 hours of multi-modal data useful for training and testing algorithms for the application of improving conversations for an AR glasses wearer. We provide speech intelligibility, quality and signal-to-noise ratio improvement results for a baseline method and show improvements across all tested metrics. The dataset we are releasing contains AR glasses egocentric multi-channel microphone array audio, wide field-of-view RGB video, speech source pose, headset microphone audio, annotated voice activity, speech transcriptions, head bounding boxes, target of speech and source identification labels. We have created and are releasing this dataset to facilitate research in multi-modal AR solutions to the cocktail party problem.


翻译:作为平台的增强现实(AR)具有促进减少鸡尾酒效应的潜力。未来的AR头盔有可能利用一系列不同方式的传感器的信息。培训和测试信号处理和机器学习算法需要高质量的代表性数据。据作者所知,截至出版时,没有包含同步自利中心多声道的多声道和视频的数据集,在吵闹的环境中有动态的移动和交谈。在这项工作中,我们描述、评价和发布一个数据集,其中包含5小时多小时的多式数据,可用于培训和测试用于应用改进AR眼镜磨损器对话的多式数据。我们为基线方法提供语音智能、质量和信号到噪音比改进结果,并显示所有测试的衡量标准都有改进之处。我们发布的数据集包含AR镜中自利心型多声道的麦克风阵列音音、广域域RGB视频、语音源显示、头部麦克风声、附加说明的语音记录、语音记录、头套话语调箱、头套话语调比对质分析工具的改进。我们提供语言感知觉的语音和源识别数据。我们所创建的多式语音和标签标识标识的解决方案是用于解的。

0
下载
关闭预览

相关内容

增强现实(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年9月9日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员