As the interest in FPGA-based accelerators for HPC applications increases, new challenges also arise, especially concerning different programming and portability issues. This paper aims to provide a snapshot of the current state of the FPGA tooling and its problems. To do so, we evaluate the performance portability of two frameworks for developing FPGA solutions for HPC (SYCL and OpenCL) when using them to port a highly-parallel application to FPGAs, using both ND-range and single-task type of kernels. The developer's general recommendation when using FPGAs is to develop single-task kernels for them, as they are commonly regarded as more suited for such hardware. However, we discovered that, when using high-level approaches such as OpenCL and SYCL to program a highly-parallel application with no FPGA-tailored optimizations, ND-range kernels significantly outperform single-task codes. Specifically, while SYCL struggles to produce efficient FPGA implementations of applications described as single-task codes, its performance excels with ND-range kernels, a result that was unexpectedly favorable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

OpenCL(Open Computing Language,开放计算语言)是一个为异构平台编写程序的框架,此异构平台可由 CPU,GPU 或其他类型的处理器组成。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员