Machine learning models for camera-based physiological measurement can have weak generalization due to a lack of representative training data. Body motion is one of the most significant sources of noise when attempting to recover the subtle cardiac pulse from a video. We explore motion transfer as a form of data augmentation to introduce motion variation while preserving physiological changes. We adapt a neural video synthesis approach to augment videos for the task of remote photoplethysmography (PPG) and study the effects of motion augmentation with respect to 1) the magnitude and 2) the type of motion. After training on motion-augmented versions of publicly available datasets, the presented inter-dataset results on five benchmark datasets show improvements of up to 75% over existing state-of-the-art results. Our findings illustrate the utility of motion transfer as a data augmentation technique for improving the generalization of models for camera-based physiological sensing. We release our code and pre-trained models for using motion transfer as a data augmentation technique on our project page: https://motion-matters.github.io/
翻译:基于摄像头的生理测量机器学习模型在表现力方面可能会存在一定的问题,因为缺乏充分代表性的训练数据。当试图从视频中恢复微妙的心脏脉搏时,身体运动是最重要的噪声来源之一。本文探索了运动转移作为一种数据增强形式,并通过保留生理学变化的同时引入运动变化来增广视频。我们采用神经视频合成方法来增广供远程光电容积描记法(PPG)用的视频,并研究了增广对运动类型和强度的影响。在使用公开数据集的经过运动增广的版本进行训练后,在五个基准数据集上展示的互数据集结果比现有最新技术结果提高了高达75%。我们的研究发现说明了运动转移作为一种数据增强技术用于改善基于摄像头的生理传感模型泛化的实用性。我们在项目页面上发布了将运动转移作为数据增强技术使用的代码和预训练模型:https://motion-matters.github.io/