A cumbersome operation in many scientific fields, is inverting large full-rank matrices. In this paper, we propose a coded computing approach for recovering matrix inverse approximations. We first present an approximate matrix inversion algorithm which does not require a matrix factorization, but uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse of a real full-rank matrix. We then present a distributed framework for which our algorithm can be implemented, and show how we can leverage sparsest-balanced MDS generator matrices to devise matrix inversion coded computing schemes. We focus on balanced Reed-Solomon codes, which are optimal in terms of computational load; and communication from the workers to the master server. We also discuss how our algorithms can be used to compute the pseudoinverse of a full-rank matrix, and how the communication is secured from eavesdroppers.
翻译:许多科学领域的繁琐操作正在倒转大型全位矩阵。 在本文中, 我们提出一个代码化计算方法来恢复矩阵反近似值。 我们首先提出一个粗略的矩阵反向算法, 它不需要矩阵因子化, 而是使用黑盒最小方形优化求解器作为子例, 来估计一个真正的全位矩阵的反向值。 然后我们提出一个分布式框架, 用于执行我们的算法, 并展示我们如何利用稀疏、 最平衡的 MDS 生成矩阵来设计矩阵反向编码计算方案 。 我们侧重于平衡的 Reed- Solomon 代码, 它在计算负荷方面是最佳的; 以及工人与主服务器的通信 。 我们还讨论如何使用我们的算法来计算全位矩阵的假反向值, 以及如何将通信从 evestopers 中安全 。