This paper considers a class of experimentation games with L\'{e}vy bandits encompassing those of Bolton and Harris (1999) and Keller, Rady and Cripps (2005). Its main result is that efficient (perfect Bayesian) equilibria exist whenever players' payoffs have a diffusion component. Hence, the trade-offs emphasized in the literature do not rely on the intrinsic nature of bandit models but on the commonly adopted solution concept (MPE). This is not an artifact of continuous time: we prove that efficient equilibria arise as limits of equilibria in the discrete-time game. Furthermore, it suffices to relax the solution concept to strongly symmetric equilibrium.
翻译:本文审议了与L\'{{{{{{{{{{{{{{{{{{{{{{{}强盗之间的实验游戏,包括博尔顿和哈里斯(1999年)以及凯勒、拉德和克里普斯(2005年)的实验游戏,其主要结果是,当玩家的酬劳具有扩散成分时,就存在效率(完全的巴伊西亚)的平衡。因此,文献中强调的权衡并不依赖于强盗模式的内在性质,而是普遍采用的解决办法概念(MPE ) 。 这不是一个持续时间的产物:我们证明,高效的平衡是作为独立时间游戏的平衡的限度产生的。 此外,只要将解决方案概念放松到高度对称平衡就足够了。