We present a new, stable, mixed finite element (FE) method for linear elastostatics of nearly incompressible solids. The method is the automatic variationally stable FE (AVS-FE) method of Calo, Romkes and Valseth, in which we consider a Petrov-Galerkin weak formulation where the stress and displacement variables are in the space H(div)xH1, respectively. This allows us to employ a fully conforming FE discretization for any elastic solid using classical FE subspaces of H(div) and H1. Hence, the resulting FE approximation yields both continuous stresses and displacements. To ensure stability of the method, we employ the philosophy of the discontinuous Petrov-Galerkin (DPG) method of Demkowicz and Gopalakrishnan and use optimal test spaces. Thus, the resulting FE discretization is stable even as the Poisson ratio approaches 0.5, and the system of linear algebraic equations is symmetric and positive definite. Our method also comes with a built-in a posteriori error estimator as well as well as indicators which are used to drive mesh adaptive refinements. We present several numerical verifications of our method including comparisons to existing FE technologies.
翻译:我们提出了一种新的、稳定的、混合的有限元素(FE)方法,用于对几乎无法压缩的固体进行线性软体抑制,这种方法是Calo、Romkes和Valseth的自动变化稳定的FE(AVS-FE)方法,我们在这个方法中考虑的是Petrov-Galerkin的弱配方,压力和变位变量分别位于H(div)xH1空间。这使我们能够对使用传统的FE子空间(H(div)和H1)的任何弹性固体采用完全一致的FE分解法。因此,由此产生的FE近似法产生持续的压力和偏移。为了确保方法的稳定性,我们采用了不连续的Petrov-Galerkin(DPG)方法的理论,即Demkowicz和Gopalakrishnan的不连续法,并使用最佳的测试空间。因此,所产生的FE离异化作用是稳定的,即使Poisson比率接近0.5,而线性高位方方方方方方方程式系统也是对正和正态的系统。我们的方法也伴随着了一种固定式的模型的调整,其中包括了我们目前对数值的调整方法,我们用于了对数值的精确的调整。