This letter proposes a semantic-aware resource allocation (SARA) framework with flexible duty cycle (DC) coexistence mechanism (SARADC) for 5G-V2X Heterogeneous Network (HetNets) based on deep reinforcement learning (DRL) proximal policy optimization (PPO). Specifically, we investigate V2X networks within a two-tiered HetNets structure. In response to the needs of high-speed vehicular networking in urban environments, we design a semantic communication system and introduce two resource allocation metrics: high-speed semantic transmission rate (HSR) and semantic spectrum efficiency (HSSE). Our main goal is to maximize HSSE. Additionally, we address the coexistence of vehicular users and WiFi users in 5G New Radio Unlicensed (NR-U) networks. To tackle this complex challenge, we propose a novel approach that jointly optimizes flexible DC coexistence mechanism and the allocation of resources and base stations (BSs). Unlike traditional bit transmission methods, our approach integrates the semantic communication paradigm into the communication system. Experimental results demonstrate that our proposed solution outperforms traditional bit transmission methods with traditional DC coexistence mechanism in terms of HSSE and semantic throughput (ST) for both vehicular and WiFi users.
翻译:暂无翻译