Exponential integrators are a well-known class of time integration methods that have been the subject of many studies and developments in the past two decades. Surprisingly, there have been limited efforts to analyze their stability and efficiency on non-diffusive equations to date. In this paper we apply linear stability analysis to showcase the poor stability properties of exponential integrators on non-diffusive problems. We then propose a simple repartitioning approach that stabilizes the integrators and enables the efficient solution of stiff, non-diffusive equations. To validate the effectiveness of our approach, we perform several numerical experiments that compare partitioned exponential integrators to unmodified ones. We also compare repartitioning to the well-known approach of adding hyperviscosity to the equation right-hand-side. Overall, we find that the repartitioning restores convergence at large timesteps and, unlike hyperviscosity, it does not require the use of high-order spatial derivatives.
翻译:指数集成器是一个众所周知的时间整合方法类别,在过去二十年中,这是许多研究和发展的主题。令人惊讶的是,迄今为止,在分析非硬方程式的稳定性和效率方面所作的努力有限。在本文中,我们应用线性稳定分析来展示指数集成器在非硬方程式问题上的不稳定性。然后我们提出一个简单的再分配方法,稳定集成器,并能够有效地解决僵硬、非易碎方程式。为了验证我们的方法的有效性,我们进行了数项数字实验,将分离的指数集成器与非软方程式进行比较。我们还比较了将分解法与众所周知的在右方方方方方方方方方方程式中增加超异性的方法进行再分配。总体而言,我们发现再分配在大时间段恢复趋同,而与超常度不同,它不需要使用高分级空间衍生物。