We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g. teacher value-added) with observational data. We show that, unlike with a single binary treatment, these regressions do not generally estimate convex averages of causal effects-even when the treatments are conditionally randomly assigned and the controls fully address omitted variables bias. We discuss different solutions to this issue, and propose as a solution anew class of efficient estimators of weighted average treatment effects.
翻译:我们研究多重依赖治疗和灵活控制回归的因果解释,这些回归常常用来分析使用多种干预手段的随机控制试验,用观察数据估计机构质量(如教师增值),我们显示,与单一的二进制治疗不同,这些回归一般不估计因果关系的曲线平均值,即使治疗是有条件随机分配的,控制完全解决了省略的变数偏差。 我们讨论这一问题的不同解决方案,并提出新的加权平均治疗效果有效估测者类别作为解决方案。