Modern data science applications increasingly use heterogeneous data sources and analytics. This has led to growing interest in polystore systems, especially analytical polystores. In this work, we focus on emerging multi-data model analytics workloads over social media data that fluidly straddle relational, graph, and text analytics. Instead of a generic polystore, we build a "tri-store" system that is more aware of the underlying data models to better optimize execution to improve scalability and runtime efficiency. We name our system AWESOME (Analytics WorkbEnch for SOcial MEdia). It features a powerful domain-specific language named ADIL. ADIL builds on top of underlying query engines (e.g., SQL and Cypher) and features native data types for succinctly specifying cross-engine queries and NLP operations, as well as automatic in-memory and query optimizations. Using real-world tri-model analytical workloads and datasets, we empirically demonstrate the functionalities of AWESOME for scalable data science over social media data and evaluate its efficiency.


翻译:现代数据科学应用越来越多地使用多种数据来源和分析。 这导致人们对多层层系统,特别是分析性多层系统的兴趣日益浓厚。 在这项工作中,我们侧重于对流分层关系、图形和文本分析的社交媒体数据新出现的多数据模型分析工作量。 我们不是建立通用的多层,而是建立一个“三层”系统,该系统更了解基本数据模型,以更好地优化执行,提高可缩放性和运行时间效率。 我们命名了我们的系统AWESOME(SOMIA 分析性工作班奇 ) 。 它有强大的域域名 ADIL。 ADIL在基本查询引擎(如SQL和Cypher)的顶端建立, 并具有本地数据类型, 用于简明地指定跨引擎查询和NLP操作, 以及自动的内模和查询优化。 我们使用真实世界的三角模型分析工作量和数据集, 实证了AWESOME在社会媒体上可扩展数据科学的功能并评估其效率。

0
下载
关闭预览

相关内容

Awesome 是运行于UNIX以及Linux、FreeBSD等类Unix操作系统上的窗口管理器,是采用GPL协议的自由软件。 不同于KWin和Metacity,awesome是一款Tiling window manager,直译就是“瓦片式窗口管理器”,意译为“平铺式窗口管理器”。所谓的平铺就是之所有的窗口都不会相互重叠,而是自动的被调整大小使得它们能够刚好占满整个屏幕。这和传统的桌面管理器的概念相差很大。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Designing Data Models for Energy Feature Stores
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员