Experience of live video streaming can be improved if future bandwidth can be predicted more accurately on the video uploader side. Thus follows a natural question, how to make predictions both easily and precisely in real networks. Researchers have developed many prediction algorithms in the literature, from where a simple algorithm comes out, Arithmetic Mean (AM). Based on that, we are purposing a new method called Empirical Conditional Mean (ECM), hoping to utilize more information in the past data to get a more accurate prediction without loss of practicality. Our experiments found that when the frequency of measuring the network throughput is low, the ECM algorithm performs better than the commonly used AM one, which means ECM can send more data out while not having a higher loss rate. Hence ECM can be helpful for those who especially have relatively limited networks to reach a more considerable balance between frame loss rate and video quality.


翻译:如果在视频上传者方面可以更准确地预测未来带宽,则现场视频流流的经验是可以改进的。 因此,接下来的自然问题是,如何在真实的网络中简单和精确地作出预测。 研究人员在文献中制定了许多预测算法,从中可以产生一个简单的算法,即自学平均值(AM ) 。 在此基础上,我们正在寻求一种叫作“经验性条件平均值(EMM)”的新方法,希望利用过去的数据获得更多的信息,以便在不丧失实用性的情况下得到更准确的预测。 我们的实验发现,当测量网络吞吐量的频率低时,企业内容管理算法比常用的AM 1 运行得更好,这意味着企业内容管理算法可以发送更多的数据,而损失率却不高。 因此,企业内容管理法对那些网络相对有限,在框架损失率和视频质量之间达到较大平衡的人可能有所帮助。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2020年4月29日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员