Adversarial examples are a widely studied phenomenon in machine learning models. While most of the attention has been focused on neural networks, other practical models also suffer from this issue. In this work, we propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification, i.e., finding a minimum-norm adversarial example. Diverging from previous proposals, we take a geometric approach by performing a search that expands outwards from a given input point. On a high level, the search radius expands to the nearby Voronoi cells until we find a cell that classifies differently from the input point. To scale the algorithm to a large $k$, we introduce approximation steps that find perturbations with smaller norm, compared to the baselines, in a variety of datasets. Furthermore, we analyze the structural properties of a dataset where our approach outperforms the competition.
翻译:Aversarial 实例是机器学习模型中广泛研究的一种现象。 虽然大多数注意力都集中在神经网络上, 其他实用模型也存在这一问题。 在这项工作中, 我们提出一种算法, 用于评估最近邻居的对抗性强度, 即找到一个最小的北纬对抗性例子。 与以前的建议不同, 我们采取几何方法, 进行从特定输入点向外扩展的搜索。 在高水平上, 搜索半径扩大到附近的Voronoi 单元格, 直到我们找到一个与输入点不同分类的单元格。 要将算法缩进到大 美元, 我们在各种数据集中引入近距离步骤, 找到比基线更小的规律。 此外, 我们分析一个数据集的结构属性, 我们的方法超越了竞争。