The aim of the history matching method is to locate non-implausible regions of the parameter space of complex deterministic or stochastic models by matching model outputs with data. It does this via a series of waves where at each wave an emulator is fitted to a small number of training samples. An implausibility measure is defined which takes into account the closeness of simulated and observed outputs as well as emulator uncertainty. As the waves progress, the emulator becomes more accurate so that training samples are more concentrated on promising regions of the space and poorer parts of the space are rejected with more confidence. Whilst history matching has proved to be useful, existing implementations are not fully automated and some ad-hoc choices are made during the process, which involves user intervention and is time consuming. This occurs especially when the non-implausible region becomes small and it is difficult to sample this space uniformly to generate new training points. In this article we develop a sequential Monte Carlo (SMC) algorithm for implementing history matching that is semi-automated. Our novel SMC approach reveals that the history matching method yields a non-implausible region that can be multi-modal, highly irregular and very difficult to sample uniformly. Our SMC approach offers a much more reliable sampling of the non-implausible space, which requires additional computation compared to other approaches used in the literature.


翻译:历史匹配方法的目的是通过将模型输出与数据相匹配,找到复杂确定性或随机模型参数空间的不令人信服的区域。它通过一系列波浪进行,每次波浪的模拟器都安装在少量的培训样本中。界定了不可信的度量,考虑到模拟和观察产出的近距离以及模拟的不确定性。随着波浪的进展,模拟器变得更加准确,使培训样本更加集中于空间中有希望的空间和较贫困的空间部分,更加自信地拒绝。虽然历史匹配已证明是有用的,但现有的执行并不是完全自动化的,在这一过程期间也做了一些临时选择,这涉及到用户的干预和耗时。特别是当非隐蔽区域变得小,很难统一地抽样这一空间以产生新的培训点。在文章中,我们开发了一套连续的蒙特卡洛(SMC)算法,用于实施半自动化的历史匹配。我们的新SMC方法揭示了历史匹配方法并不完全自动化,在与不精确的取样区域进行不精确的计算时,需要一种不精确的、不精确的、不精确的、不精确的、不精确的、可复制的多重的计算方法。

0
下载
关闭预览

相关内容

SMC:IEEE International Conference on Systems,Man, and Cybernetics Explanation:IEEE系统、人与控制论国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/smc/
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员