We introduce a computational origami problem which we call the segment folding problem: given a set of $n$ line-segments in the plane the aim is to make creases along all segments in the minimum number of folding steps. Note that a folding might alter the relative position between the segments, and a segment could split into two. We show that it is NP-hard to determine whether $n$ line segments can be folded in $n$ simple folding operations.
翻译:我们引入了一个折叠折叠的计算折合金问题,我们称之为折叠折叠问题:考虑到飞机上一套以美元为单位的折叠线条,目的是在折叠步骤的最小数量中使折叠各段的折叠。请注意折叠可能会改变各段之间的相对位置,而一个段段可分成两部分。我们表明,确定折叠成美元是否折叠成美元简单的折叠操作是NP硬的。