We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is ensured through Markov chain Monte Carlo boosting methods. All sampling algorithms are implemented in C++, allowing for rapid parameter estimation. In addition, UPG provides several methods for fast production of output tables and summary plots that are easily accessible to a broad range of users.
翻译:我们引入了 " UPG " 套件,用于高高效的贝叶斯推算 probit、logit、多数值逻辑和二元逻辑模型。 " UPG " 为平衡和不平衡的数据设置提供了一个方便的估计框架,通过Markov连锁 Monte Carlo的推进方法确保了取样效率。所有抽样算法都在C++中实施,允许快速参数估计。此外, " UPG " 提供了多种方法,用于快速生产产出表和简要图,这些表和图便于广大用户使用。