Collaborative edge computing (CEC) is an emerging paradigm enabling sharing of the coupled data, computation, and networking resources among heterogeneous geo-distributed edge nodes. Recently, there has been a trend to orchestrate and schedule containerized application workloads in CEC, while Kubernetes has become the de-facto standard broadly adopted by the industry and academia. However, Kubernetes is not preferable for CEC because its design is not dedicated to edge computing and neglects the unique features of edge nativeness. More specifically, Kubernetes primarily ensures resource provision of workloads while neglecting the performance requirements of edge-native applications, such as throughput and latency. Furthermore, Kubernetes neglects the inner dependencies of edge-native applications and fails to consider data locality and networking resources, leading to inferior performance. In this work, we design and develop ENTS, the first edge-native task scheduling system, to manage the distributed edge resources and facilitate efficient task scheduling to optimize the performance of edge-native applications. ENTS extends Kubernetes with the unique ability to collaboratively schedule computation and networking resources by comprehensively considering job profile and resource status. We showcase the superior efficacy of ENTS with a case study on data streaming applications. We mathematically formulate a joint task allocation and flow scheduling problem that maximizes the job throughput. We design two novel online scheduling algorithms to optimally decide the task allocation, bandwidth allocation, and flow routing policies. The extensive experiments on a real-world edge video analytics application show that ENTS achieves 43\%-220\% higher average job throughput compared with the state-of-the-art.


翻译:合作边缘计算(CEC)是一个新兴范例,它使得不同地理分布的边缘节点之间能够共享数据、计算和网络资源。最近,出现了一种趋势,即对中央选举委员会的封闭应用工作量进行协同安排和安排,而Kubernetes则成为行业和学术界广泛采用的脱法标准。然而,Kubernetes对于中央选举委员会来说并不可取,因为其设计不是为了优化计算和忽视边缘本地特性的独特性。更具体地说,Kubernetes主要确保提供工作量的资源,而忽略了边际应用的边际应用的性能要求,例如吞吐量和悬浮。此外,Kubernetes忽视了边际应用的内部依赖性,没有考虑数据位置和联网资源,导致业绩低下。在这项工作中,我们设计和开发了第一个边际任务调度系统,以管理分散的边缘资源,便利高效的任务时间安排,优化边际应用。 ENTS(EN)将Kubernetes扩大库网络应用与协作性流程计算和联网资源配置的独特能力,通过全面考虑工作效率配置,通过Sentalalalal 配置,我们通过Salalalalalalal lading a ex a ex a ex ex ex a ex a ex sal ex a ex a ex ex ex ex ex ex ex ex ex exaltrading the welational ex ex ex ex sloututaldaldaldal ex) ex a ex a ex a exmentaltra a ex ex exaltramentaldaldaltramentalmentalmentalmentaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal ex ex ex ex ex desmentaldaldal ex,通过我们我们我们我们 我们 我们 上,我们通过测试,通过测试,通过测试,通过测试了一个工作表展示了一种工作流和Oalalalalalalalal

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员