Collaborative edge computing (CEC) is an emerging paradigm enabling sharing of the coupled data, computation, and networking resources among heterogeneous geo-distributed edge nodes. Recently, there has been a trend to orchestrate and schedule containerized application workloads in CEC, while Kubernetes has become the de-facto standard broadly adopted by the industry and academia. However, Kubernetes is not preferable for CEC because its design is not dedicated to edge computing and neglects the unique features of edge nativeness. More specifically, Kubernetes primarily ensures resource provision of workloads while neglecting the performance requirements of edge-native applications, such as throughput and latency. Furthermore, Kubernetes neglects the inner dependencies of edge-native applications and fails to consider data locality and networking resources, leading to inferior performance. In this work, we design and develop ENTS, the first edge-native task scheduling system, to manage the distributed edge resources and facilitate efficient task scheduling to optimize the performance of edge-native applications. ENTS extends Kubernetes with the unique ability to collaboratively schedule computation and networking resources by comprehensively considering job profile and resource status. We showcase the superior efficacy of ENTS with a case study on data streaming applications. We mathematically formulate a joint task allocation and flow scheduling problem that maximizes the job throughput. We design two novel online scheduling algorithms to optimally decide the task allocation, bandwidth allocation, and flow routing policies. The extensive experiments on a real-world edge video analytics application show that ENTS achieves 43\%-220\% higher average job throughput compared with the state-of-the-art.
翻译:合作边缘计算(CEC)是一个新兴范例,它使得不同地理分布的边缘节点之间能够共享数据、计算和网络资源。最近,出现了一种趋势,即对中央选举委员会的封闭应用工作量进行协同安排和安排,而Kubernetes则成为行业和学术界广泛采用的脱法标准。然而,Kubernetes对于中央选举委员会来说并不可取,因为其设计不是为了优化计算和忽视边缘本地特性的独特性。更具体地说,Kubernetes主要确保提供工作量的资源,而忽略了边际应用的边际应用的性能要求,例如吞吐量和悬浮。此外,Kubernetes忽视了边际应用的内部依赖性,没有考虑数据位置和联网资源,导致业绩低下。在这项工作中,我们设计和开发了第一个边际任务调度系统,以管理分散的边缘资源,便利高效的任务时间安排,优化边际应用。 ENTS(EN)将Kubernetes扩大库网络应用与协作性流程计算和联网资源配置的独特能力,通过全面考虑工作效率配置,通过Sentalalalal 配置,我们通过Salalalalalalal lading a ex a ex a ex ex ex a ex a ex sal ex a ex a ex ex ex ex ex ex ex ex ex exaltrading the welational ex ex ex ex sloututaldaldaldal ex) ex a ex a ex a exmentaltra a ex ex exaltramentaldaldaltramentalmentalmentalmentaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal ex ex ex ex ex desmentaldaldal ex,通过我们我们我们我们 我们 我们 上,我们通过测试,通过测试,通过测试,通过测试了一个工作表展示了一种工作流和Oalalalalalalalal