In this paper we present a novel hybrid (arraybased layout and vertical bitmap layout) database representation approach for mining complete Maximal Frequent Itemset (MFI) on sparse and large datasets. Our work is novel in terms of scalability, item search order and two horizontal and vertical projection techniques. We also present a maximal algorithm using this hybrid database representation approach. Different experimental results on real and sparse benchmark datasets show that our approach is better than previous state of art maximal algorithms.
翻译:在本文中,我们展示了一种新型混合(基于阵列的布局和垂直位图布局)数据库代表法,用于在稀有和大数据集上开采完整的Maximal Central Centrial Projectset(MFI) 。我们的工作在可缩放性、项目搜索顺序以及两个水平和垂直投影技术方面都是新颖的。我们还展示了一种使用这种混合数据库代表法的最大算法。关于实际和稀少的基准数据集的不同实验结果显示,我们的方法比以往的先进最大算法要好。