Advertising channels have evolved from conventional print media, billboards and radio advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a casual attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict pre-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modelling on the predicted channel attribution.


翻译:广告渠道从传统的印刷媒体、广告牌和广播广告演变为在线数字广告(ad),用户通过社交网络、显示广告、搜索等接触一系列广告运动。广告商重新审视广告运动的设计,以同时满足新广告渠道产生的要求。广告商还必须根据客户行动的顺序对不同渠道的触摸点(视图、点击、转换)的贡献作出估计。这种捐款计量过程通常被称为多触摸归属(MTA)。在这项工作中,我们提议CAMTA为用户个性化的MTA提供一个新的深层次经常神经网络结构,在观察数据方面,这是用户个性化的随机归属机制。CAMTA尽可能减少频道跨时间步和触摸点分配中的选择偏差。此外,它以原则方式利用用户的改变前行动来预测频道的归属。为了对拟议的MTA模式进行定量衡量,我们使用真实的世界域图数据设置,并展示CAMTA在预测用户预测定位数据定位方面优异性性业绩,以预测预测预测用户的进度基线。

1
下载
关闭预览

相关内容

多媒体工具和应用程序(MTA)期刊出版关于多媒体开发和系统支持工具的原始研究文章,以及多媒体应用程序的案例研究。它还包括实验和调查文章。这本杂志是为从事多媒体系统研究、设计和应用的学者、实践者、科学家和工程师准备的。所有论文都经过同行评审。 官网地址:http://dblp.uni-trier.de/db/journals/mta/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Attention最新进展
极市平台
5+阅读 · 2020年5月30日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
11+阅读 · 2019年4月15日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Attention最新进展
极市平台
5+阅读 · 2020年5月30日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员