Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user's feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user's emotion and the user's experiences, and ignore those between the user's experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user's emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.
翻译:最近对同情反应的生成方法包含情感因果关系,以提高对用户感情和经历的理解。然而,这些方法存在两个关键问题。首先,这些方法只考虑用户情感和用户经历之间的因果关系,而忽略用户经历之间的因果关系。第二,它们忽视了因果关系和原因之间的相互依存性。为了解决上述问题,我们期望从用户的情感、对话历史和未来对话内容的角度,同时、相互依存地解释所有可信的因果关系。然后,我们将这些因果关系纳入对同情反应的反应的生成中。具体地说,我们设计了一种新的模型,即用于因果关系推理的新条件图自动编码器(CVGAE),并采用多种来源的注意机制来分解因果关系。我们把整个框架命名为CARE, 缩写成为CARE, 缩写为对同情性对话的因果关系解释。实验结果表明我们的方法达到了艺术状态。