A partially parallel dynamical noisy binary choice (Ising) game in discrete time of $N$ players on complete graphs with $k$ players having a possibility of changing their strategies at each time moment called $k$-flip Ising game is considered. Analytical calculation of the transition matrix of game as well as the first two moments of the distribution of $\varphi=N^+/N$, where $N^+$ is a number of players adhering to one of the two strategies, is presented. First two moments of the first hitting time distribution for sample trajectories corresponding to transition from a metastable and unstable states to a stable one are considered. A nontrivial dependence of these moments on $k$ for the decay of a metastable state is discussed. A presence of the minima at certain $k^*$ is attributed to a competition between $k$-dependent diffusion and restoring forces.


翻译:本文研究了一种在完全图上进行的、具有N名玩家的离散时间部分并行动态噪声二元选择(伊辛)博弈,其中每时刻有k名玩家可能改变其策略,称为k-翻转伊辛博弈。文中给出了博弈转移矩阵的解析计算,以及分布φ=N⁺/N(其中N⁺为坚持两种策略之一的玩家数量)的前两阶矩。同时考虑了从亚稳态和不稳定态向稳定态跃迁的样本轨迹首次命中时间分布的前两阶矩。讨论了亚稳态衰变过程中这些矩对k的非平凡依赖关系。特定k*处极小值的出现归因于依赖k的扩散力与恢复力之间的竞争。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2019年1月26日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
相关论文
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2019年1月26日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员