While the uptake of data-driven approaches for materials science and chemistry is at an exciting, early stage, to realise the true potential of machine learning models for successful scientific discovery, they must have qualities beyond purely predictive power. The predictions and inner workings of models should provide a certain degree of explainability by human experts, permitting the identification of potential model issues or limitations, building trust on model predictions and unveiling unexpected correlations that may lead to scientific insights. In this work, we summarize applications of interpretability and explainability techniques for materials science and chemistry and discuss how these techniques can improve the outcome of scientific studies. We discuss various challenges for interpretable machine learning in materials science and, more broadly, in scientific settings. In particular, we emphasize the risks of inferring causation or reaching generalization by purely interpreting machine learning models and the need of uncertainty estimates for model explanations. Finally, we showcase a number of exciting developments in other fields that could benefit interpretability in material science and chemistry problems.
翻译:虽然在材料科学和化学方面采用以数据驱动的方法是一个令人兴奋的早期阶段,为了实现机器学习模型对成功科学发现的真正潜力,它们必须具有超出纯预测力的品质,模型的预测和内在作用应提供人类专家某种程度的解释性,允许确定潜在的模型问题或局限性,建立对模型预测的信任,并披露可能导致科学洞察力的意外关联。在这项工作中,我们总结了材料科学和化学的可解释性和可解释性技术的应用,并讨论了这些技术如何能够改善科学研究的结果。我们讨论了材料科学以及更广泛的科学环境中可解释的机器学习的各种挑战。我们特别强调通过纯粹解释机器学习模型推断因果关系或实现概括化的风险,以及模型解释需要不确定性估计的必要性。最后,我们展示了其他领域中一些令人振奋人心的发展,这些发展有助于材料科学和化学问题的可解释性。