This paper presents a comprehensive study of algorithms for maintaining the number of all connected four-vertex subgraphs in a dynamic graph. Specifically, our algorithms maintain the number of any four-vertex subgraph, which is not a clique, in deterministic amortized update time $\mathcal{O}(m^{1/2})$, resp., $\mathcal{O}(m^{2/3})$. Queries can be answered in constant time. For length-3 paths, paws, 4-cycles, and diamonds these bounds match or are not far from (conditional) lower bounds: Based on the OMv conjecture we show that any dynamic algorithm that detects the existence of length-3 paths, 4-cycles, diamonds, or 4-cliques takes amortized update time $\Omega(m^{1/2-\delta})$. Additionally, for 4-cliques and all connected induced subgraphs, we show a lower bound of $\Omega(m^{1-\delta})$ for any small constant $\delta > 0$ for the amortized update time, assuming the static combinatorial 4-clique conjecture holds. This shows that the $\mathcal{O}(m)$ algorithm by Eppstein et al. [9] for these subgraphs cannot be improved by a polynomial factor.
翻译:本文展示了用于在动态图中维持所有连接的四面体子图数的算法的全面研究。 具体地说, 我们的算法保持了四个顶点子图数, 而不是球形, 在确定性摊销更新时间$\ mathcal{O} (m ⁇ 1/2}) $, 重写, $\ mathcal{O} (m ⁇ 2/3}) $。 Query 可以以恒定时间回答 。 对于长度 - 3 路径、 爪子、 4 周期和 钻石, 这些界限匹配或离( 有条件) 下限不远 : 基于 OMv 猜测, 我们显示任何检测长度 - 3 路径、 4 循环、 钻石或 4 级更新时间值的动态算法 。 此外, 对于 4 - cliqueriquequeques (m=1-\\\\ delta) a- minal adal_ a- cal am am), 我们显示一个固定的直径 Qal- am_ am_ adal_ am_ adal_ a_ a_ adal_ a_ a_ a_ a_ a_ axl_ axl_ axl_ axxxxxl_ axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx