The architecture design and multi-scale learning principles of the human brain that evolved over hundreds of millions of years are crucial to realizing human-like intelligence. Spiking Neural Network (SNN) based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intelligence because of its brain-inspired structure and the potential for integrating multiple biological principles. Existing researches on LSM focus on different certain perspectives, including high-dimensional encoding or optimization of the liquid layer, network architecture search, and application to hardware devices. There is still a lack of in-depth inspiration from the learning and structural evolution mechanism of the brain. Considering these limitations, this paper presents a novel LSM learning model that integrates adaptive structural evolution and multi-scale biological learning rules. For structural evolution, an adaptive evolvable LSM model is developed to optimize the neural architecture design of liquid layer with separation property. For brain-inspired learning of LSM, we propose a dopamine-modulated Bienenstock-Cooper-Munros (DA-BCM) method that incorporates global long-term dopamine regulation and local trace-based BCM synaptic plasticity. Comparative experimental results on different decision-making tasks show that introducing structural evolution of the liquid layer, and the DA-BCM regulation of the liquid layer and the readout layer could improve the decision-making ability of LSM and flexibly adapt to rule reversal. This work is committed to exploring how evolution can help to design more appropriate network architectures and how multi-scale neuroplasticity principles coordinated to enable the optimization and learning of LSMs for relatively complex decision-making tasks.
翻译:人类大脑经过数亿年的演化,其架构设计和多尺度学习原则对于实现人类般的智能至关重要。基于脉冲神经网络(SNN)的液态状态机(LSM)由于其类似于大脑的结构和集成多种生物学原则的潜力而成为研究类脑智能的合适体系结构。现有的LSM研究集中于不同的角度,包括高维编码或液体层的优化、网络结构搜索和应用于硬件设备。但是,现有研究缺乏深入参考大脑学习和结构演化机制。鉴于这些限制,本文提出了一种新的LSM学习模型,它集成了适应性结构演化和多尺度生物学习规则。对于结构演化,开发了一种自适应进化的LSM模型,以优化液体层的神经架构设计,并具有分离特性。对于LSM的类脑学习,我们提出了一种多巴胺调节的Bienenstock-Cooper-Munros(DA-BCM)方法,该方法结合了全局长期多巴胺调节和局部基于痕迹的BCM突触可塑性。在不同的决策任务上进行的比较实验结果表明,引入液体层的结构演化和液体层和读取层的DA-BCM调节可以提高LSM的决策能力并灵活地适应规则反转。本工作致力于探索如何利用进化来设计更合适的网络架构,并协调多尺度神经可塑性原则,使LSM能够优化和学习相对复杂的决策任务。