High-dimensional fractional reaction-diffusion equations have numerous applications in the fields of biology, chemistry, and physics, and exhibit a range of rich phenomena. While classical algorithms have an exponential complexity in the spatial dimension, a quantum computer can produce a quantum state that encodes the solution with only polynomial complexity, provided that suitable input access is available. In this work, we investigate efficient quantum algorithms for linear and nonlinear fractional reaction-diffusion equations with periodic boundary conditions. For linear equations, we analyze and compare the complexity of various methods, including the second-order Trotter formula, time-marching method, and truncated Dyson series method. We also present a novel algorithm that combines the linear combination of Hamiltonian simulation technique with the interaction picture formalism, resulting in optimal scaling in the spatial dimension. For nonlinear equations, we employ the Carleman linearization method and propose a block-encoding version that is appropriate for the dense matrices that arise from the spatial discretization of fractional reaction-diffusion equations.
翻译:暂无翻译