In this paper, we present a pure-Python open-source library, called PyPop7, for black-box optimization (BBO). It provides a unified and modular interface for more than 60 versions and variants of different black-box optimization algorithms, particularly population-based optimizers, which can be classified into 12 popular families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC), Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming (EP), Pattern Search (PS), and Random Search (RS). It also provides many examples, interesting tutorials, and full-fledged API documentations. Through this new library, we expect to provide a well-designed platform for benchmarking of optimizers and promote their real-world applications, especially for large-scale BBO. Its source code and documentations are available at https://github.com/Evolutionary-Intelligence/pypop and https://pypop.readthedocs.io/en/latest, respectively.
翻译:在本文中,我们介绍一个名为Python开放源库的纯PyPop7图书馆,用于黑箱优化(BBO),它为60多个版本和变式的不同黑箱优化算法提供了统一和模块界面,特别是基于人口的优化算法,可分为12个流行家庭:进化战略(ES)、自然演进战略(NES)、分配指数估计(EDA)、跨Entropy方法(CEM)、差异进化(DE)、粒子蒸汽优化器(PSO)、合作革命(CC)、模拟安纳林(SA)、遗传 Algorithms(GA)、进化规划(EP)、模式搜索(PS)和随机搜索(RS)。它还提供了许多例子、有趣的辅导和完整化的API文件。我们期望通过这一新图书馆提供一个设计良好的平台,用以确定优化者的基准,并促进其真实世界应用,特别是大规模BBOO。其源代码和文件可在https://githrub.comstrub.com/Egrestarioalyos.