We analyze the performance of a reduced-order simulation of geometric meta-materials based on zigzag patterns using a simplified representation. As geometric meta-materials we denote planar cellular structures which can be fabricated in 2d and bent elastically such that they approximate doubly-curved 2-manifold surfaces in 3d space. They obtain their elasticity attributes mainly from the geometry of their cellular elements and their connections. In this paper we focus on cells build from so-called zigzag springs. The physical properties of the base material (i.e., the physical substance) influence the behavior as well, but we essentially factor them out by keeping them constant. The simulation of such complex geometric structures comes with a high computational cost, thus we propose an approach to reduce it by abstracting the zigzag cells by a simpler model and by learning the properties of their elastic deformation behavior. In particular, we analyze the influence of the sampling of the full parameter space and the expressiveness of the reduced model compared to the full model. Based on these observations, we draw conclusions on how to simulate such complex meso-structures with simpler models.


翻译:我们用简化的表示法分析基于zigzag模式的几何元材料的缩放模拟的性能。作为几何元元材料,我们用简化的表示法来表示可以制成在2天和斜曲的平面结构,以使之在3天空间中近似双弯的2张平面表面。它们主要从其细胞元素的几何学和它们的连接中获得弹性特性。在本文中,我们侧重于从所谓的zigzag弹簧中建起的细胞。基底材料(即物理物质)的物理特性也影响着行为,但我们基本上通过保持它们不变来将之作为因素。这种复杂的几何结构的模拟是高计算成本,因此我们建议一种方法,通过简单的模型抽取zigzag细胞并了解其弹性变形行为的性质来减少这种结构。特别是,我们分析了全面参数空间取样的影响以及模型(即物理物质)相对于完整模型的清晰度。根据这些观察结果,我们用更简单的模型来得出如何模拟这种复杂的结构。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员