As the micro-video apps become popular, the numbers of micro-videos and users increase rapidly, which highlights the importance of micro-video recommendation. Although the micro-video recommendation can be naturally treated as the sequential recommendation, the previous sequential recommendation models do not fully consider the characteristics of micro-video apps, and in their inductive biases, the role of positions is not in accord with the reality in the micro-video scenario. Therefore, in the paper, we present a model named PDMRec (Position Decoupled Micro-video Recommendation). PDMRec applies separate self-attention modules to model micro-video information and the positional information and then aggregate them together, avoid the noisy correlations between micro-video semantics and positional information being encoded into the sequence embeddings. Moreover, PDMRec proposes contrastive learning strategies which closely match with the characteristics of the micro-video scenario, thus reducing the interference from micro-video positions in sequences. We conduct the extensive experiments on two real-world datasets. The experimental results shows that PDMRec outperforms existing multiple state-of-the-art models and achieves significant performance improvements.
翻译:由于微型视频应用程序越来越受欢迎,微型视频和用户的数量迅速增加,这突显了微型视频建议的重要性。虽然微型视频建议可以自然地作为顺序建议处理,但先前的连续建议模式并没有充分考虑到微型视频应用程序的特点,而且在其感应偏差中,立场的作用与微型视频情景的现实不相符。因此,在文件中,我们提出了一个名为PDMRec(定位脱钩微型视频建议)的模型。PDMRec对模拟微型视频信息和定位信息采用单独的自我注意模块,然后将它们合并在一起,避免微型视频语义和定位信息之间在被编码为序列嵌入的顺序中出现吵闹的关联。此外,PDMRec提出了与微型视频情景情景特征密切匹配的对比学习战略,从而减少了微视频在序列中的干扰。我们在两个真实世界数据集上进行了广泛的实验。实验结果表明,PDMRec超越了现有多种状态的绩效改进模型和显著的绩效模型。