We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.
翻译:我们考虑在概率模型中进行贝叶斯推论的问题,在概率模型中,观测结果附有不确定性,称为“不确定证据”。 我们探索如何解释不确定的证据,并由此推展适当解释对于潜在变量推论的重要性。 我们考虑最近提出的“分配证据”方法,并重审两种老方法:杰弗里的规则和虚拟证据。 我们设计了如何考虑不确定证据的指导方针,我们提供了新的见解,特别是关于一致性的见解。为了展示对同一不确定证据的不同解释的影响,我们进行了实验,其中一种解释被定义为“正确”。 然后我们比较了每一种不同解释的推论结果,表明认真考虑不确定证据的重要性。