Distributive laws are a standard way of combining two monads, providing a compositional approach for reasoning about computational effects in semantics. Situations where no such law exists can sometimes be handled by weakening the notion of distributive law, still recovering a composite monad. A celebrated result from Eugenia Cheng shows that combining more monads is possible by iterating more distributive laws, provided they satisfy a coherence condition called the Yang-Baxter equation. Moreover, the order of composition does not matter, leading to a form of associativity. The main contribution of this paper is to generalise the associativity of iterated composition to weak distributive laws. To this end, we use string-diagrammatic notation, which significantly helps make increasingly complex proofs more readable. We also provide examples of new weak distributive laws arising from iteration.
翻译:分配法是将两个寺院合并的标准方式,为计算语义效果的推理提供了一种构成方法,不存在这种法律的情况有时可以通过削弱分配法的概念来处理,而这种法律仍在恢复一个复合的寺院。尤金尼娅·成的一项值得称道的结果表明,如果有更多的分配法能够相互混合,那么可以将更多的寺院结合起来,只要它们符合一个叫作Yang-Baxter等式的一致条件。此外,组成顺序并不重要,导致一种联系形式。本文的主要贡献是将迭代制的构成的关联性普遍化为脆弱的分配法。为此,我们使用弦式的语法符号,这极大地有助于使日益复杂的证据更容易读取。我们还提供了因迭代而出现的新的薄弱分配法的例子。