Knowledge Distillation (KD) has developed extensively and boosted various tasks. The classical KD method adds the KD loss to the original cross-entropy (CE) loss. We try to decompose the KD loss to explore its relation with the CE loss. Surprisingly, we find it can be regarded as a combination of the CE loss and an extra loss which has the identical form as the CE loss. However, we notice the extra loss forces the student's relative probability to learn the teacher's absolute probability. Moreover, the sum of the two probabilities is different, making it hard to optimize. To address this issue, we revise the formulation and propose a distributed loss. In addition, we utilize teachers' target output as the soft target, proposing the soft loss. Combining the soft loss and the distributed loss, we propose a new KD loss (NKD). Furthermore, we smooth students' target output to treat it as the soft target for training without teachers and propose a teacher-free new KD loss (tf-NKD). Our method achieves state-of-the-art performance on CIFAR-100 and ImageNet. For example, with ResNet-34 as the teacher, we boost the ImageNet Top-1 accuracy of ResNet18 from 69.90% to 71.96%. In training without teachers, MobileNet, ResNet-18 and SwinTransformer-Tiny achieve 70.04%, 70.76%, and 81.48%, which are 0.83%, 0.86%, and 0.30% higher than the baseline, respectively. The code is available at https://github.com/yzd-v/cls_KD.


翻译:知识蒸馏( KD) 广泛发展并提升了各种任务 。 古典 KD 方法将KD 损失加到原始交叉渗透( CE) 损失中 。 我们试图将KD 损失分解为探索与 CE 损失的关系。 令人惊讶的是, 我们发现它可以被视为 CE 损失和额外损失的结合, 其形式与 CE 损失相同。 然而, 我们注意到额外损失迫使学生学习教师绝对概率的相对概率。 此外, 两种概率的总和不同, 使得它难以优化。 为了解决这个问题, 我们修改配方并提议一个分布式损失。 此外, 我们利用教师目标输出作为软目标, 软损失和额外损失的结合, 我们提出一个新的 KD( NKD) 损失。 然而, 我们发现额外损失迫使学生将它作为没有教师培训的软目标, 并且提出了一个新的 KD( tf- NKD) 损失。 。 两种概率的数值是不同的, 使得它很难优化。 为了解决这个问题, 我们的方法在 SIFAR- NEO- 和 RE- RE- RE- RED 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2021年12月31日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员