Probabilistic password strength meters have been proved to be the most accurate tools to measure password strength. Unfortunately, by construction, they are limited to solely produce an opaque security estimation that fails to fully support the user during the password composition. In the present work, we move the first steps towards cracking the intelligibility barrier of this compelling class of meters. We show that probabilistic password meters inherently own the capability of describing the latent relation occurring between password strength and password structure. In our approach, the security contribution of each character composing a password is disentangled and used to provide explicit fine-grained feedback for the user. Furthermore, unlike existing heuristic constructions, our method is free from any human bias, and, more importantly, its feedback has a probabilistic interpretation. In our contribution: (1) we formulate interpretable probabilistic password strength meters; (2) we describe how they can be implemented via an efficient and lightweight deep learning framework suitable for client-side operability.


翻译:概率密码强度表已被证明是最精确的测量密码强度的工具。 不幸的是,通过构建,它们仅限于生成不透明的安全估计,无法在密码构成期间充分支持用户。在目前的工作中,我们迈出了第一步,以打破这种逼不得已的仪表的智能障碍。我们表明概率密码仪本身就具有描述密码强度和密码结构之间潜在关系的能力。在我们的方法中,组成密码的每个字符的安全贡献是分解的,用来为用户提供明确的精细的反馈。此外,与现有的超常结构不同,我们的方法没有人类偏见,更重要的是,其反馈有一个概率性的解释。我们的贡献:(1) 我们制定可解释的概率密码强度表;(2) 我们描述如何通过一个适合客户端可操作的高效和轻度深层次学习框架来实施这些功能。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员