In this paper, we make the key delineation on the roles of resolution and statistical uncertainty in black-box optimization, guiding a more general analysis and a more efficient algorithm design. We introduce \textit{optimum-statistical collaboration}, an algorithm framework of managing the interaction between optimization error flux and statistical error flux evolving in the optimization process. We provide a general analysis of the framework without specific forms of the statistical error and the uncertainty quantifier. Our framework and its analysis, because of their generality, can be applied to functions and partitions that satisfy different local smoothness assumptions and has different number of local optimums, which is much larger than the class of functions studied in prior works. Our framework also inspires us to propose a better measure of the statistical uncertainty and consequently a variance-adaptive algorithm \texttt{VHCT}. In theory, we prove the algorithm enjoys rate-optimal regret bounds under different local smoothness assumptions; in experiments, we show the algorithm outperforms prior efforts in different settings.


翻译:在本文中, 我们对黑盒优化中的分辨率和统计不确定性的作用进行关键划分, 指导更一般性的分析和更有效的算法设计。 我们引入了\ textit{ optim- statistical work}, 这是管理优化误差通量和优化过程中演变的统计误差通量之间的相互作用的算法框架。 我们提供了对框架的总体分析, 没有统计错误和不确定性量化符的具体形式。 我们的框架及其分析, 由于其普遍性, 可以适用于满足不同地方平稳假设和具有不同数量的地方最佳功能和分区, 这大大超过以往工作所研究的功能类别。 我们的框架还激励我们提出更好的统计不确定性计量方法, 并因此提出差异适应性算法 \ textt{VHCT} 。 在理论上, 我们证明算法在不同的本地平稳假设下享有率- 最佳的遗憾界限; 在实验中, 我们展示算法在不同的环境中比先前的努力要好。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
Top
微信扫码咨询专知VIP会员