The fundamental problem in Neural Architecture Search (NAS) is to efficiently find high-performing architectures from a given search space. We propose a simple but powerful method which we call FEAR, for ranking architectures in any search space. FEAR leverages the viewpoint that neural networks are powerful non-linear feature extractors. First, we train different architectures in the search space to the same training or validation error. Then, we compare the usefulness of the features extracted by each architecture. We do so with a quick training keeping most of the architecture frozen. This gives fast estimates of the relative performance. We validate FEAR on Natsbench topology search space on three different datasets against competing baselines and show strong ranking correlation especially compared to recently proposed zero-cost methods. FEAR particularly excels at ranking high-performance architectures in the search space. When used in the inner loop of discrete search algorithms like random search, FEAR can cut down the search time by approximately 2.4X without losing accuracy. We additionally empirically study very recently proposed zero-cost measures for ranking and find that they breakdown in ranking performance as training proceeds and also that data-agnostic ranking scores which ignore the dataset do not generalize across dissimilar datasets.
翻译:神经结构搜索(NAS) 的根本问题是从特定的搜索空间找到高性能建筑。 我们提出了一个简单而有力的方法, 我们称之为 FEAR, 用于在任何搜索空间的排名结构。 FEAR 利用神经网络是强大的非线性特征提取器的观点。 首先, 我们将搜索空间的不同建筑培训成相同的培训或验证错误。 然后, 我们比较每个结构所提取的特征的有用性。 我们这样做时, 我们用快速培训来保存大部分结构的冻结。 这给出了相对性能的快速估计。 我们根据竞争基线对三个不同数据集的 FEAR 进行测试, 并显示与最近提出的零成本方法相比, 高度的排名相关关系。 特别在搜索空间的高级性能结构排名方面表现优异。 当使用离散搜索算法的内部循环时, FEAR 可以将搜索时间减少约2.4X, 而不会失去准确性能。 我们最近通过实验研究提出了排序的零成本措施, 并发现它们作为培训过程进行分解, 数据排序时不会忽略一般数据排序。