Software debugging has been shown to utilize upwards of half of developers' time. Yet, machine programming (MP), the field concerned with the automation of software (and hardware) development, has recently made strides in both research and production-quality automated debugging systems. In this paper we present ControlFlag, a self-supervised MP system that aims to improve debugging by attempting to detect idiosyncratic pattern violations in software control structures. ControlFlag also suggests possible corrections in the event an anomalous pattern is detected. We present ControlFlag's design and provide an experimental evaluation and analysis of its efficacy in identifying potential programming errors in production-quality software. As a first concrete evidence towards improving software quality, ControlFlag has already found an anomaly in CURL that has been acknowledged and fixed by its developers. We also discuss future extensions of ControlFlag.


翻译:软件调试显示,软件调试利用了开发者时间的一半以上的时间。然而,与软件(和硬件)开发自动化有关的领域机器程序(MP)最近在研究和生产质量自动调试系统方面都取得了长足进展。在本文件中,我们介绍了一个自我监督的MP系统“控制法拉格 ” ( ControlFlag ), 目的是通过试图探测软件控制结构中的异常现象来改进调试。 控制法拉也建议,如果发现异常模式,可能会进行更正。 我们介绍了控制法拉的设计,并提供了对其在确定生产质量软件中潜在编程错误方面的有效性的实验性评估和分析。作为改进软件质量的第一个具体证据,控制法拉已经发现CURL的异常现象,开发者已经承认并固定了这种异常现象。我们还讨论了控制法拉格的未来扩展。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年5月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
19+阅读 · 2020年7月21日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年5月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员