The emergence and dynamics of filamentary structures associated with edge-localized modes (ELMs) inside tokamak plasmas during high-confinement mode is regularly studied using Electron Cyclotron Emission Imaging (ECEI) diagnostic systems. Such diagnostics allow us to infer electron temperature variations, often across a poloidal cross-section. Previously, detailed analysis of these filamentary dynamics and classification of the precursors to edge-localized crashes has been done manually. We present a machine-learning-based model, capable of automatically identifying the position, spatial extend, and amplitude of ELM filaments. The model is a deep convolutional neural network that has been trained and optimized on an extensive set of manually labeled ECEI data from the KSTAR tokamak. Once trained, the model achieves a $93.7\%$ precision and allows us to robustly identify plasma filaments in unseen ECEI data. The trained model is used to characterize ELM filament dynamics in a single H-mode plasma discharge. We identify quasi-periodic oscillations of the filaments size, total heat content, and radial velocity. The detailed dynamics of these quantities appear strongly correlated with each other and appear qualitatively different during the pre-crash and ELM crash phases.
翻译:在高封闭模式诊断系统中,利用电流导导导导射成像(ECEI)系统,定期研究托卡马克等离子体中与边缘定位模式有关的丝状结构的出现和动态。这种诊断使我们能够推断出电子温度变化,通常跨跨亲疏截截截截截截截截截截截截截截截截截截截截截截截截盘。以前,对这些丝状动态进行详细分析,并将前体分类为边缘定位碰撞。我们提出了一个基于机器的学习模型,能够自动识别埃卡马克等离子体的方位、空间扩展和放大。模型是一个深层的卷变神经网络,经过培训和优化,利用了来自KSTAR tokamak的大量手动标定的ECEI数据。模型经过培训后,就实现了93.7元的精确度,并使我们能够在隐蔽的ECEII数据中强有力地识别血浆丝成细线。经过培训的模型用于在单一H-分子等离子排放中描述ELM的丝动态动态动态。我们确定了每段的准周期性电压和直径结构结构结构。我们,这些变化中呈现出各种的准确度。